Email or username:

Password:

Forgot your password?
Top-level
niconiconi

Trap for young players... If you're disabling another interrupt within an interrupt, that disabled interrupt source may have already set its flag just before you've disabled it, causing a TACTOU situation. When the ISR returns, that supposedly-disabled IRQ is immediately invoked. I just spent an hour trying to debug a strange problem because of this race condition... ​:woozy_baa:​ #electronics

4 comments
niconiconi replied to niconiconi

Success. High-voltage supply and regulation are now fully functional. My fatally flawed analog power supply problem has been fixed in software. The burst-ON hack turned out to not "just a software hack" but kind of an optimal solution given the circuit components constraints. If I need a real hardware solution I'd just implement exactly the same control with RC timers and AND gates instead of an interrupt service routine. #electronics

niconiconi replied to niconiconi

More progress on the high-voltage impulse generator. The huge capacitors, resistors and inductors for pulse shaping are now installed for testing. They mostly work. But this test uncovered a serious problem - each time the circuit fires, I can hear an arcing noise, the oscilloscope also shows a weird glitch, likely caused by arcing. The generator is supposed to destroy the device-under-test, not itself! Now my suspect is the isolated DC-DC module. Just ordered a better one for another try... #electronics

niconiconi replied to niconiconi

Problem solved. The "arcing" sound during the impulse current discharge is NOT a fault. It's actually a common phenomenon in all high-current pulse circuits. The "snap" noise was caused by sudden physical deformations of the circuit board itself, due to Lorentz force from the intense current. #electronics

niconiconi replied to niconiconi

Success! My first circuit board prototype of the IEC 61000-4-5 Combination Wave Generator (aka Lightning Surge Generator, aka Impulse Generator) is working after a month of development. This PCB has greatly improved safety and usability compared to the original perfboard. #electronics

Surge waveforms are compliant to IEC 61000-4-5's 1.2/50 μs & 8/20 μs requirements.
Open-Circuit Voltage:
- 1.02 kV, Front time: 1.33 μs, Duration: 53.60 μs
Short-Circuit Current:
- 484 A, Front time: 7.53 μs, Duration: 21.51 μs

Go Up